
COMPSCI 389
Introduction to Machine Learning

Nearest Neighbor Variants
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

1

Nearest Neighbor

• Find the point in the training data that is
“closest” to the query.

• Return the corresponding label.
• If two points are equally close, select the

label of any one point.
• Pros:

• Simple
• Sometimes all that you need!

• Cons:
• Not always accurate, even with large

amounts of data

Nearest Neighbor Improvements

• Notions of “distance” that are customized to the data set.
• Better handling of the case where many points are equally “close”

to the query:
• Query = 1.0 (horizontal axis)
• All points are zero distance from the query.
• Points have different labels (vertical axis).
• With infinite data, the basic NN algorithm

will not make reasonable predictions.
• What should we do in this case?

• Take the average of the labels (or
median)

When is the median more appropriate?

Nearest Neighbor Improvements

• What if the points are not equally close, but many points are
close?

• Only showing the closest points to the query.
• Imagine many points for other input values

(horizontal axis), which are not shown.
• Idea: Average the labels of the 𝑘 nearest points

• 𝑘 is an integer hyperparameter.

Hyperparameter

• A hyperparameter of an ML algorithm is a variable, like 𝑘, that
changes the behavior of the algorithm.
• It is often set by the data scientist applying the algorithm.
• It is not “learned” by the algorithm.

𝑘-Nearest Neighbors (k-NN)

• Idea: Average the labels of the 𝑘 nearest points
• Pseudocode:

• Find the 𝑘 nearest neighbors to the query point.
• Called the “nearest neighbors”
• If you will run many queries, consider using a data structure like a KD-Tree to find the nearest neighbors

• Set the prediction to be the average label of these 𝑘 nearest neighbors.

• Code:

Hyperparameter,
default value 𝑘 = 3

Fit: Unchanged from NN

Here ind is:
• (𝑚,𝑘) NumPy array

• 𝑚: Number of query points
• 𝑘: The number of nearest neighbors

• ind[i,j]: The index of the 𝑗th nearest
neighbor to the 𝑖th query point.

Here self.y_data[ind] is:
• (𝑚,𝑘) NumPy array

• 𝑚: Number of query points
• 𝑘: The number of nearest neighbors
• [𝑖, 𝑗]: The label for the 𝑗th nearest neighbor to the 𝑖th

query point.

np.mean(self.y_data[ind], axis=1)

• Axis=1 specifies to take the mean for each row.
• Computes the average of the 𝑘 labels for each query.
• Returns an array with one value per query (per row of

self.y_data[ind])

NN vs 𝑘-NN (metrics)

NN vs 𝑘-NN (data and train/test split)

Why shuffle=True?

NN vs 𝑘-NN

We will load results_list with
• A list of dictionaries
• Each dictionary is a column name and a value
• Should look like this
• Can be converted to a DataFrame with:

Desired Result:

Loading results_list:

Highlighting best values (see .ipynb for code)

Question: Is it
surprising that 𝑘 =
100 performs well
here?

Nearest Neighbor Improvements (Part 2)

• When does 𝑘-NN do something unreasonable?
• When some of the nearest neighbor are very close and some are relatively

far away.
• 𝑘-NN does not consider how far away points are as long as they are within

the 𝑘 nearest neighbors.

• Idea: Assign different weights to each of the 𝑘 neighbors based on
their distance from the query point.
• Called “Weighted 𝑘-Nearest Neighbors” (weighted 𝑘-NN)
• Ensures that closer neighbors have a bigger influence on the prediction

than neighbors that are far away.

Weighted 𝑘-Nearest Neighbor

• Let 𝑥𝑖
𝑁𝑁 , 𝑦𝑖

𝑁𝑁 be the 𝑖th nearest neighbor
• Let 𝑤𝑖 be the weight associated with this point

• We consider only non-negative weights: 𝑤𝑖 ≥ 0.
• We describe how 𝑤𝑖 can be computed on future slides.

• Weighted 𝑘-NN predicts the label:

ො𝑦 =
σ𝑖=1

𝑘 𝑤𝑖𝑦𝑖
𝑁𝑁

σ𝑗=1
𝑘 𝑤𝑗

• This is equivalent to:

ො𝑦 = ෍

𝑖=1

𝑘
𝑤𝑖

σ𝑗=1
𝑘 𝑤𝑗

𝑦𝑖
𝑁𝑁

Why divide by the sum of the weights?
• So that the weights sum to one.

• This is a weighted average.

• Example (without dividing by weights)
𝑤1 = 2, 𝑤2 = 3, 𝑦1

𝑁𝑁 = 9 𝑦2
𝑁𝑁 = 11

ො𝑦 = ෍

𝑖=1

2

𝑤𝑖 𝑦𝑖
𝑁𝑁 = 2 × 9 + 3 × 11 = 51

• Weighted average of 9 and 11 is 51?!
• Example (making weights sum to one):

ො𝑦 = ෍

𝑖=1

2
𝑤𝑖

σ𝑗=1
𝑘 𝑤𝑗

𝑦𝑖
𝑁𝑁 =

2

2 + 3
9 +

3

2 + 3
11 = 10.2

• Example normalizing at the end (fewer multiplication/division operations):

ො𝑦 =
σ𝑖=1

2 𝑤𝑖𝑦𝑖
𝑁𝑁

σ𝑗=1
2 𝑤𝑗

=
2 × 9 + 3 × 11

(2 + 3)
= 10.2

ො𝑦 =
σ𝑖=1

𝑘 𝑤𝑖𝑦𝑖
𝑁𝑁

σ𝑗=1
𝑘 𝑤𝑗

ො𝑦 = ෍

𝑖=1

𝑘
𝑤𝑖

σ𝑗=1
𝑘 𝑤𝑗

𝑦𝑖
𝑁𝑁

Weighting Options

• Would it be reasonable to use:
𝑤𝑖 = dist 𝑥𝑖

𝑁𝑁 , 𝑥query ?

• No, this would place larger weights on points that are farther from
the query.

• We could use the inverse of the distance:
𝑤𝑖 =

1

dist 𝑥𝑖
𝑁𝑁, 𝑥query

• We might want the weight to decrease faster for points that are
farther away.

ො𝑦 = ෍

𝑖=1

𝑘
𝑤𝑖

σ𝑗=1
𝑘 𝑤𝑗

𝑦𝑖
𝑁𝑁

Possible Weighting Scheme

Gaussian Kernel

• The re-scaled probability density function (PDF) of a normal distribution.
• PDF of a normal distribution

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒

−
𝑥−𝜇 2

2𝜎2

• Mean 𝜇 = 0
• Standard deviation 𝜎 (a hyperparameter)

• Normalizing the weights makes the constant 1

𝜎 2𝜋
 cancel out in each weight.

Hence:

𝑤𝑖 = 𝑒
−

𝑥2

2𝜎2

• We use 𝑥 = dist 𝑥𝑖
𝑁𝑁 , 𝑥query giving:

𝑤𝑖 = 𝑒
−

dist 𝑥𝑖
𝑁𝑁,𝑥query

2

2𝜎2

Gaussian Kernel

• What is the impact of a bigger value of 𝜎?
• It makes the weight curve wider
• Places larger weights (more emphasis) on points that are farther

away

• What is the impact of a smaller value of 𝜎?
• It makes the weight curve tighter
• Places more emphasis on points that are closer

𝑤𝑖 = 𝑒
−

dist 𝑥𝑖
𝑁𝑁,𝑥query

2

2𝜎2ො𝑦 = ෍

𝑖=1

𝑘
𝑤𝑖

σ𝑗=1
𝑘 𝑤𝑗

𝑦𝑖
𝑁𝑁

𝑤𝑖 = 𝑒
−

dist 𝑥𝑖
𝑁𝑁,𝑥query

2

2𝜎2ො𝑦 = ෍

𝑖=1

𝑘
𝑤𝑖

σ𝑗=1
𝑘 𝑤𝑗

𝑦𝑖
𝑁𝑁

Weighted 𝑘-Nearest Neighbor

We now have two hyperparameters, 𝑘 and 𝜎

Fit is unchanged

Gaussian Kernel

𝑤𝑖 = 𝑒
−

dist 𝑥𝑖
𝑁𝑁,𝑥query

2

2𝜎2

Predict
You could compute all
dist, ind using one
call to tree.query, not
one call per query. For 0th query in

tree.query

NN vs 𝑘-NN vs Weighted 𝑘-NN

Nearest Neighbor Variants

• How can nearest neighbor algorithms be extended to the
classification setting?

• Common Solution: Use a majority vote among the 𝑘 nearest
neighbors.
• Unweighted: The most common label among the nearest neighbors is

selected.
• Weighted: Each neighbor’s vote is weighted using, for example, the

Gaussian kernel.

Tuning Hyperparameters

• How should we set 𝑘 and 𝜎?
• Idea: Enumerate a “grid” of possible values.

• Try all possible combinations of values of 𝑘 in k_values and 𝜎
in sigma_values.
• If plotted as points where the horizontal axis is 𝑘 and the vertical is 𝜎 (or

vice versa), the points would form a grid.
• Hence, called “Grid Search”

• Select the values that result in the best evaluation

Tuning Hyperparameters

• Grid search is common due to its simplicity.
• Research suggests that randomized searches may be more

principled.
• Randomly sample each hyperparameter from some distribution
• Typically run for some fixed number of hyperparameter settings

Grid Search Results (Weighted 𝑘-NN, GPA)

• Why do you think a value of 𝑘
around 200 is particularly
effective for this problem?

• Why do you think 𝜎 = 75 works
for a wide range of 𝑘?

• Why do you think changing 𝜎
makes little difference when it is
large?

• As you work with each ML
algorithm, you’ll get a sense for
how to set the hyperparameters
• It’s an “art” and a “science”

	Slide 1: COMPSCI 389 Introduction to Machine Learning
	Slide 2: Nearest Neighbor
	Slide 3: Nearest Neighbor Improvements
	Slide 4: Nearest Neighbor Improvements
	Slide 5: Hyperparameter
	Slide 6: k-Nearest Neighbors (k-NN)
	Slide 7: Fit: Unchanged from NN
	Slide 8
	Slide 9: NN vs k-NN (metrics)
	Slide 10: NN vs k-NN (data and train/test split)
	Slide 11: NN vs k-NN
	Slide 12: Desired Result:
	Slide 13: Loading results_list:
	Slide 14
	Slide 15: Highlighting best values (see .ipynb for code)
	Slide 16: Nearest Neighbor Improvements (Part 2)
	Slide 17: Weighted k-Nearest Neighbor
	Slide 18: Why divide by the sum of the weights?
	Slide 19: Weighting Options
	Slide 20: Possible Weighting Scheme
	Slide 21: Gaussian Kernel
	Slide 22: Gaussian Kernel
	Slide 23
	Slide 24: Weighted k-Nearest Neighbor
	Slide 25: Fit is unchanged
	Slide 26: Gaussian Kernel
	Slide 27: Predict
	Slide 28: NN vs k-NN vs Weighted k-NN
	Slide 29: Nearest Neighbor Variants
	Slide 30: Tuning Hyperparameters
	Slide 31: Tuning Hyperparameters
	Slide 32: Grid Search Results (Weighted k-NN, GPA)

