COMPSCI 389
Introduction to Machine Learning

Nearest Neighbor Variants
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Nearest Neighbor

* Find the pointin the training data that is

“closest” to the query.

* Return the corresponding label.
* |f two points are equally close, select the

label of any one point.

* Pros:
* Simple

* Sometimes all that you need!

e Cons:

* Not always accurate, even with large

amounts of data

import pandas as pd
from sklearn.neighbors import KDTree
from sklearn.base import BaseEstimator

import numpy as np

class NearestNeighbor(BaseEstimator):

def

def

fit(self, X, y):
Convert X and y to NumPy arrays if they are DataFrames.
if isinstance(X, pd.DataFrame):
X = X.values
if isinstance(y, pd.Series):
y = y.values

Store the training data and labels.
self.X_data = X
self.y _data = y

Create a KDTree for efficient nearest neighbor search
self.tree = KDTree(X))

return self

predict(self, X):
Convert X to a NumPy array if it's a DataFrame
if isinstance(X, pd.DataFrame):

X = X.values

We will iteratively load predictions, so it starts empty
predictions = []

Loop over rows in the query
for x in X:
Query the tree for the nearest neighbor
, ind = self.tree.query([x], k=1)
nearest_label = self.y_data[ind[@][©]]
predictions.append(nearest_label)

Return the array of predictions we have created
return np.array(predictions)

Nearest Neighbor Improvements

* Notions of “distance” that are customized to the data set.

* Better handling of the case where many points are equally “close”

to the query:
* Query=1.0 (horizontal axis)

Data Points with Identical x-value and Noisy Labels
T

f e * All points are zero distance from the query.
* Points have different labels (vertical axis).
* With infinite data, the basic NN algorithm

! will not make reasonable predictions.

* What should we do in this case?

i * Take the average of the labels (or
S median)

X-axis

When is the median more appropriate?

Nearest Neighbor Improvements

* What if the points are not equally close, but many points are
close?

Data Points Near x = 1 with Noisy Labels

® Data Points

‘ * Only showing the closest points to the query.
* Imagine many points for other input values
(horizontal axis), which are not shown.
* |ldea: Average the labels of the k nearest points
* kisaninteger hyperparameter.

XXXXXX

Hyperparameter

* A hyperparameter of an ML algorithm is a variable, like k, that
changes the behavior of the algorithm.
* |tis often set by the data scientist applying the algorithm.
* |[tis not “learned” by the algorithm.

k-Nearest Neighbors (k-NN)

Idea: Average the labels of the k nearest points

Pseudocode:

* Find the k nearest neighbors to the query point.

 Calledthe “nearest neighbors”
If you will run many queries, consider using a data structure like a KD-Tree to find the nearest neighbors

» Setthe prediction to be the average label of these k nearest neighbors.

e Code:

class KNearestNeighbors(BaseEstimator):
Add a constructor that stores the value of k (a hyperparameter)

def init (self, k=3): Hyperparameter,
self.k = k default value k = 3

Fit: Unchanged from NN

def fit(self, X, y): Dr Dy
Convert X and y to NumPy arrays if they are DataFrames
if isinstance(X, pd.DataFrame):
X = X.values
if isinstance(y, pd.Series):
y = y.values

Store the training data and labels
self.X data = X
self.y data = vy

Create a KDTree for efficient nearest neighbor search
self.tree = KDTree(X)

return self

def predict(self, X):
Convert X to a NumPy array if it's a DataFrame
if isinstance(X, pd.DataFrame):
X = X.values

Here indis:

 (m,k) NumPy array

* m: Number of query points

* k:The number of nearest neighbors

e ind[i,j]:Theindexof the j" nearest dist,
neighbor to the it" query point.

uery the tree for the k nearest neighbors for all points in X
ind = self.tree.query(X, k=self.k)

Return the average label for the nearest neighbors of each query
return np.mean(self.y data[ind], axis=1)

Here self.y datalind] is: array([[3.16667 , 3.2 , 3.73333],
e (m,k) NumPy array [3.55667 , 2.14333 , 1.33333],
’ [3.23667 , 2.5 , 2.93333],

* m: Number of query points .,

 k:The number of nearest neighbors %@‘97333% 2.60333 , 3.37667 }
.. : .) 3.15 , 2.95 , 2.28 ,
* [i,j]: The label for the j' nearest neighbor to the it [3.42 131333 , 2.53667]])

query point.

w

3

np.mean (self.y datal[ind], axis=1)

* Axis=1 specifies to take the mean for each row.

« Computes the average of the k labels for each query.

* Returns an array with one value per query (per row of
self.y datal[ind])

1 A
MSE = — Z(y% _ yi)Qa

NN vs k-NN (metrics) "

n

def mean_squared_error(predictions, labels): i=1
return np.mean((predictions - labels) ** 2) n
1
def root_mean_squared_error(predictions, labels): hﬂj{fﬂ:::;; 2 :|Zﬁ __Zﬁ|‘
return np.sqrt(mean_squared_error(predictions, labels)) 1=1
def mean_absolute_error(predictions, labels): R2 1 Z?:l (yz- — @3)2
return np.mean(np.abs(predictions - labels)) — 41— n N9 ?
> i1 (Ui — 9)°

def r_squared(predictions, labels):
ss_res = np.sum((labels - predictions) ** 2) # ss res is the "Sum of Squares of Residuals”
ss_tot = np.sum((labels - np.mean(labels)) ** 2) # ss tot is the "Total Sum of Squares”
return 1 - (ss_res / ss_tot)

NN vs k-NN (data and train/test split)

from sklearn.model selection import train_test split

Load the data set
df = pd.read csv("data/GPA.csv", delimiter="',")

We already loaded X and y, but do it again as a reminder
X = df.iloc[:, :-1]
y = df.iloc[:, -1]

Split the data into training and testing sets (60% train, 40% test)
X _train, X test, y train, y test = train test split(X, y, test size=0.4, shuffle=True)

e

Why shuffle=True?

NN vs k-NN

List of values of k to test
k_values = [1, 2, 3, 5, 10, 100, 1000, 5000]

List to store the results.
results list = []

This will be a list of dictionaries

We willload results 1list with

 Alist of dictionaries

 Each dictionaryis a column name and a value
* Should look like this

e (Can be converted to a DataFrame with:

Create DataFrame from the list of results.
results = pd.DataFrame(results list)

Print the results
display(results)

A\ 4

[{'k": 1,
"MSE"':
"RMSE ' :
"MAE "' :
"‘Rr21:

{'k': 2,
"MSE"':
"RMSE ' :
"MAE "' :
"RN27':

{'k': 3,
"MSE"':
"RMSE ' :
"MAE ' :
"RA2':

{'k': s,
"MSE "' :
"RMSE ' :
"MAE ' :
"RA21':

{'k': 10

1.1520837122547205,
1.073351625635663,

0.8237428042373861,

-0.6877687897963096},

0.8534297082546841,
©.9238125936869902,

©0.7135534991369357,

-0.2502494485042783},

0.7644680530281004,
©.8743386375015691,

0.6781620021552554,

-0.11992323732453802},

0.6883302537154519,
0.829656708353191,

0.6449510498949313,

-0.008383598288957517},

J

Desired Result:

k
1

2
3
5
10
100
1000
5000

MSE
1.152084
0.853430
0.764468
0.688330
0.631001
0.579404
0.581676
0.600544

RMSE
1.073352
0.923813
0.874339
0.829657
0.794356
0.761186
0.762677
0.774947

MAE
0.823743
0.713553
0.678162
0.644951
0.620237
0.596919
0.600227
0.616670

RA2
-0.687769
-0.250249
-0.119923
-0.008384

0.075602
0.151190
0.147861
0.120221

Loading results list:

Evaluate NN and k-NN models

for k in k_values:
model = KNearestNeighbors(k=k)
model.fit(X _train, y train)
predictions = model.predict(X test)

mse = mean_squared _error(predictions, y test)

rmse = root_mean_squared_error(predictions, y test)
mae = mean_absolute error(predictions, y test)

r2 = r_squared(predictions, y_test)

Create a dictionary with the relevant variables from this value of k, and add it to results list
results list.append({'k': k, 'MSE': mse, 'RMSE': rmse, 'MAE': mae, 'R"2': r2})

List of values of k to test
k values = [1, 2, 3, 5, 10, 100, 1000, 5000]

List to store the results. This will be a list of dictionaries
results list = []

Evaluate NN and k-NN models

for k in k_values:
model = KNearestNeighbors(k=k)
model.fit(X train, y train)
predictions = model.predict(X test)

mse = mean_squared_error(predictions, y_ test)

rmse = root_mean_squared_error(predictions, y test)
mae = mean_absolute error(predictions, y_test)

r2 = r_squared(predictions, y test)

Create a dictionary with the relevant variables from this value of k, and add it to results list.
results list.append({'k': k, 'MSE': mse, 'RMSE': rmse, 'MAE': mae, 'R"2': r2})

Create DataFrame from the list of results. Each dictionary in the list becomes a row in the DataFrame
results = pd.DataFrame(results list)

Print the results
display(results)

Highlighting best values (see .ipynb for code)

~N~ O v A W N

o e W N

100
1000
5000

MSE
1.152084
0.853430
0.764468
0.688330
0.631001

0.579404

0.581676
0.600544

RMSE
1.073352
0.923813
0.874339
0.829657
0.794356

0.761186

0.762677
0.774947

MAE
0.823743
0.713553
0.678162
0.644951
0.620237

0.596919

0.600227
0.616670

RA2

-0.687769
-0.250249
-0.119923
-0.008384

0.075602

0.151190

0.147861
0.120221

Question: Isit
surprisingthat k =
100 performs well
here?

Nearest Neighbor Improvements (Part 2)

 When does k-NN do something unreasonable?

* When some of the nearest neighbor are very close and some are relatively
far away.

* k-NN does not consider how far away points are as long as they are within
the k nearest neighbors.

* ldea: Assign different weights to each of the k neighbors based on
their distance from the query point.
* Called “Weighted k-Nearest Neighbors” (weighted k-NN)

* Ensures that closer neighbors have a bigger influence on the prediction
than neighbors that are far away.

Weighted k-Nearest Neighbor

* Let (xlNN,leN) be the i*M nearest neighbor

* Let w; be the weight associated with this point
* We consider only non-negative weights: w; = 0.
* We describe how w; can be computed on future slides.

* Weighted k-NN predicts the label:

k NN
i=1 WiYi

K .
j=1%j

k
Wi
o NN
Y= ZZ" s
i=1~J=1"J

<
I

* Thisis equivalent to:

Why divide by the sum of the weights?

So that the weights sum to one.
* Thisis a weighted average.

Example (without dividing by weights)
Wy =2,w, = 3,y =9 yWN =11

y=§}wﬂm=2x9+3x11=51
i=1
Weighted average of 9and 11is 517!
Example (making weights sum t(z) one):

P = i _ ¢ 9+ . 11 = 10.2
y]1]” T 2+3° 2+3

Example normalizing at the end fewer multAPllcatlon/dlws,lon operations):

. Zl 1 WiY; 2><9+3><11

k
5 Wi NN
Weighting Options g 2 Xiw

* Would it be reasonable to use:
w; = dist(x{v N ,xquery)?
* No, this would place larger weights on points that are farther from
the query.

e We could use the inverse of the distance:
1

dist(xMV, xquery)

* We might want the weight to decrease faster for points that are
farther away.

W; =

Possible Weighting Scheme

1.0 ~

0.8

0.6

—

=

0.4 -

0.2 1

0.0 1

I
0.0

|
0.5

I
1.0

!
1.5
dist(xM, xguer,)

I
2.0

|
2.5

I
3.0

Gaussian Kernel

* The re-scaled probability density function (PDF) of a normal distribution.
* PDF of a normal distribution

£ =
xX) = e 20
oV2m
e Meanu=20
* Standard deviation o (a hyperparameter)
.. . 1 : :
* Normalizing the weights makes the constant = cancel out in each weight.
Hence:
xz 1.0 4
w; = e 202

* Weuse x = dist(x{v N xquery) giving: o
. NN 0.4
Wi u— e 20-2 0.2 7

0.0 A

0.0 0.5 1.0 15 2.0 2.5 3.0

==

2
_dist(x{VN,xquery)

Wi = e 2072

|
a‘
=

Gaussian Kernel i D5 Wj

* What is the impact of a bigger value of o7?
* |t makes the weight curve wider
* Places larger weights (more emphasis) on points that are farther
away
* What is the impact of a smaller value of g?
* |t makes the weight curve tighter
* Places more emphasis on points that are closer

dist(x"", Xquery)

w I}

Wi

Mw

j=

k

1]

v

Wi

el

_dist(x{v N

Xquery)

Gaussian Kernel with Different Sigma Values

2072

1.0 4
0.8 1
0.6 — g=0.1
g=1

0.4 - —— o=10
0.2 1
0.0 -

0.0 0.5 1.0 1.5 2.0 2.5 3.0

dist(xM, Xquery)

Weighted k-Nearest Neighbor

class WeightedKNearestNeighbors(BaseEstimator):
Add a constructor that stores the value of k and sigma (hyperparameters)
def init (self, k=3, sigma=1.0):
self.k = k
self.sigma = sigma

We now have two hyperparameters, k and o

Fit is unchanged

def fit(self, X, y):
Convert X and y to NumPy arrays if they are DataFrames
if isinstance(X, pd.DataFrame):
X = X.values
if isinstance(y, pd.Series):
y = y.values

Store the training data and labels
self.X data = X
self.y data =y

Create a KDTree for efficient nearest neighbor search
self.tree = KDTree(X)

return self

Gaussian Kernel

. (NN 2
_dlst(xl- Xquery)
w; =e 207

def gaussian kernel(self, distance):
Gaussian kernel function
return np.exp(- (distance ** 2) / (2 * self.sigma ** 2))

def

Predict

You could compute all
dist, ind usingone

callto tree.query, not \
S

one call per query.

array([[100.40687128, 105.49888009, 109.22491566]])

array([[6178, 1856, 9622]], dtype=inte4)

predict(self, X):
Convert X to a NumPy array if it's a DataFrame
if isinstance(X, pd.DataFrame):

X = X.values

We will iteratively load predictions, so it starts empty
predictions = []

Loop over rows in the query
for x in X:
Query the tree for the k nearest neighbors

dist, ind = self.tree.query([x], k=self.k) For Oth queryin

———————,—JV' -
Calculate weights using the Gaussia;{h&rﬁgfl

weights = self.gaussian_kernel(dist[e])

Check if weights sum to zero. This happens when all poifits are very far
if np.sum(weights) == @:
If weights sum to zero, assign equal weight to
weights = np.ones like(weights)

1 neighbors

Weighted average of the labels of the k nearest/neighbors
weighted_avg _label = np.average(self.y_data[ind[@]], weights=weights)
predictions.append(weighted avg label)

Return the array of predictions we have created
return np.array(predictions)

S o B W N

NN vs k-NN vs Weighted k-NN

Model

k-NN k=1 sigma=None
k-NN k=100 sigma=None
k-NN k=100 sigma=100
k-NN k=200 sigma=100
k-NN k=300 sigma=100
k-NN k=400 sigma=100
k-NN k=500 sigma=100

MSE
1.152084
0.579404
0.579572
0.577554

0.577443
0.577620
0.578077

RMSE
1.073352
0.761186
0.761297
0.759970

0.759897
0.760013
0.760314

MAE
0.823743
0.596919
0.596952

0.596220
0.596408
0.596670
0.597044

RA2
-0.687769
0.151190
0.150943
0.153901
0.154062
0.153804
0.153135

Nearest Neighbor Variants

* How can nearest neighbor algorithms be extended to the
classification setting?

« Common Solution: Use a majority vote among the k nearest
neighbors.

* Unweighted: The most common label among the nearest neighbors is
selected.

* Weighted: Each neighbor’s vote is weighted using, for example, the
Gaussian kernel.

Tuning Hyperparameters

* How should we set k and ¢?
* |[dea: Enumerate a “grid” of possible values.

Define the ranges for k and sigma
k values = [k for k in range(100, 1100, 100)]
sigma values = [20, 50, 75, 100, 200, 400, 600]

* Try all possible combinations of valuesof k in k values ando
In sigma values.

* If plotted as points where the horizontal axis is k and the vertical is o (or
vice versa), the points would form a grid.

* Hence, called “Grid Search”
e Select the values that result in the best evaluation

Tuning Hyperparameters

* Grid search is common due to its simplicity.

* Research suggests that randomized searches may be more
principled.
* Randomly sample each hyperparameter from some distribution
* Typically run for some fixed number of hyperparameter settings

Grid Search Results (Weighted k-NN, GPA)

Heatmap of R~ 2 for Different k and sigma

0.153 0.154

100

- 0.1540
0.151 0.151

0.154 0.154 0.154

= 0.154 0.154
"

S 0.154 0.154
w

S 0.154 0.153
i}

S 0.154

W

S 0.153

=

S 0.153

o0

=

=

[}]

]

=

(]

=

20 50 75 100
sSigma

0.154 0.153 - 0.1530

0.153

0.1510

200 400 600

Why do you think a value of k

around 200 is particularly

effective for this problem?

Why do you think 6 = 75 works

for a wide range of k?

Why do you think changing o

makes little difference when it is

large?

As you work with each ML

algorithm, you’ll get a sense for

how to set the hyperparameters
* |t’san“art” and a “science”

	Slide 1: COMPSCI 389 Introduction to Machine Learning
	Slide 2: Nearest Neighbor
	Slide 3: Nearest Neighbor Improvements
	Slide 4: Nearest Neighbor Improvements
	Slide 5: Hyperparameter
	Slide 6: k-Nearest Neighbors (k-NN)
	Slide 7: Fit: Unchanged from NN
	Slide 8
	Slide 9: NN vs k-NN (metrics)
	Slide 10: NN vs k-NN (data and train/test split)
	Slide 11: NN vs k-NN
	Slide 12: Desired Result:
	Slide 13: Loading results_list:
	Slide 14
	Slide 15: Highlighting best values (see .ipynb for code)
	Slide 16: Nearest Neighbor Improvements (Part 2)
	Slide 17: Weighted k-Nearest Neighbor
	Slide 18: Why divide by the sum of the weights?
	Slide 19: Weighting Options
	Slide 20: Possible Weighting Scheme
	Slide 21: Gaussian Kernel
	Slide 22: Gaussian Kernel
	Slide 23
	Slide 24: Weighted k-Nearest Neighbor
	Slide 25: Fit is unchanged
	Slide 26: Gaussian Kernel
	Slide 27: Predict
	Slide 28: NN vs k-NN vs Weighted k-NN
	Slide 29: Nearest Neighbor Variants
	Slide 30: Tuning Hyperparameters
	Slide 31: Tuning Hyperparameters
	Slide 32: Grid Search Results (Weighted k-NN, GPA)

